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Abstract
Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that primarily

affects cognitive function. Early detection is a crucial factor in slowing the disease’s progression,
improving quality of life, and retaining cognitive function for years beyond diagnosis.
Traditional detection methods have included a mix of mental tests, Magnetic Resonance Imaging
(MRI) scans, and Positron Emission Tomography (PET) scans. At the same time, machine
scanning methods boast an accuracy rate of up to 85%. These processes are relatively expensive,
and language barriers often hinder cognitive function tests. Neuro is a study program that utilizes
artificial intelligence and machine learning to analyze vocal cognitive tests for biomarkers of
Alzheimer’s Disease. Using a blend of traditional machine learning (Random Forest (RF),
Support Vector Machines (SVM), Gradient Boosting (GB)) mixed with neural networks, such as
Recurring Neural Networks (RNNs), Convolution Neural Networks (CNNs), and Feedforward
Neural Networks (FNNs), allows Neuro to retain its accuracy within its study. Neuro boasts an
accuracy rate of 95%, an 88.3% F1 Score, 95% recall, 82.6% precision, and an AUC (Area
Under the Curve) of 0.931. Working in tandem with diagnosis is the explanation of data; for this,
we utilized SHAP (SHapley Additive exPlanations) for individual predictions. Machine learning
programming is both cost-effective and accessible, allowing it to be utilized in various clinical
settings.

Introduction

Alzheimer’s Disease is characterized by a buildup of beta-amyloid plaques (AP) and twisted tau
(microtubule-associated protein) proteins within nerves and neurons, respectively. Symptoms
include, but are not limited to, emotional instability, speech changes, and confusion. The primary
indicator of the disorder is memory loss, both short-term and long-term. As of 2025, there are no
known cures for Alzheimer’s Disease, but there are treatments to slow progression and improve
quality of life. However, these treatments become difficult if the disease is not detected in its
early stages. Early diagnosis is key to providing patients with the highest level of care and
preserving their minds. Unfortunately, there is a lack of accessible and accurate early detection
methods. Whilst Cerebrospinal Fluid (CSF) testing and PET scans can be effective, they’re
extremely expensive and require expert knowledge to interpret. However, the rapidly developing
field of Al may provide a new method. Through innovative machine learning models such as
neural networks (RNN, CNN, FNN), support vector machines (SVM), and traditional tree-based
models, massive improvements in pattern recognition, natural language processing (NLP), and
time-series forecasting (prediction) have been made. Neuro utilizes hybrid machine learning
models, combining RNN, CNN, RF, SVM, Multi-layer Perceptron (MLP, a type of FNN), and
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GB to provide the most accurate possible results. Neuro also makes use of OpenAl’s automatic
speech recognition (ASR) model, Whisper, for accurate transcription/translation. These processes
come together to form a machine that is both cost-effective and precise, despite difficulties like
differences in language.

Recently, artificial intelligence-related developments in the field of neuroscience have been
gaining traction. Garcia-Gutierrez et al.! were one of the earliest teams to develop tools for
speech-based Alzheimer’s analysis, using extreme gradient boosting (XGB) as their central
model. This study displayed an impressive accuracy rate of 87%. However, Garcia-Guiterrez did
not include a multilingual aspect. Ceyhan et al.> developed a machine based on multilingual Al
speech analysis using RF and MLP. Despite boasting an accuracy rate of 72% for English and
76% for Spanish, this study lacked crucial Mel-Frequency Cepstral Coefficients (MFCCs).
MFCCs are a small set of features that represent the important characteristics of a sound as it is
perceived by the human ear. Despite how helpful their precision can be in detecting traits of
Alzheimer’s in speech, MFCCs have been overlooked in countless studies. The ASR model
Whisper is also an overlooked tool for this process. Created by Radford et al®, Whisper is a
robust tool capable of multilingual analysis, allowing for the implementation of these methods of
detection across a wide variety of languages. Garcia-Guiterrez et al. and Ceyhan et al. highlight
the success of the use of Al -- particularly tree-based models and neural networks -- in the
detection of neurodegenerative diseases. Neuro is a novel twist on such studies, utilizing tree-
based, ensemble, and neural networks in conjunction with MFCCs and Whisper Al to deliver the
best results possible.

A common issue among machine learning models is their inability to explain their results. To
avoid this, Neuro uses SHAP. SHAP is a game-theory-based methodology that explains machine
learning outputs through Shapley values. The method is unique due to its ability to provide
global and local explanations for machine learning models as well as its versatility and precision.
Through SHAP’s capabilities as an explanation technique, Neuro is better able to communicate
with study participants about unique biomarkers that may stand out during diagnosis.
Personalization is also a unique tool that SHAP utilizes; its skills to provide individualized
reports are extremely crucial in a clinical setting where symptoms may vary from patient to
patient. By providing individualized reports, Neuro, working in tandem with SHAP, can display
reports tailored to patients, creating a streamlined diagnosis to treatment methods.

Results

Neuro’s study was centered around simulated data. To account for skewed data, we
simulated data within real-world noisy situations. We based our model’s predictions on people
already diagnosed with Alzheimer’s and compared similar biomarkers. From that, we utilized
SHAP to construct a graph of values that displayed correspondence to Alzheimer’s. To validate
such data, Neuro evaluated consistency between the 151 biomarkers used as well as the
consistency of the value ranges. The metrics used to display accuracy for Neuro were primarily
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the accuracy rate and cross-entropy loss rate. The accuracy rate was favored because a high
accuracy rate could indicate how correctly Neuro could distinguish between correct diagnoses
across all possible cases. Cross-entropy loss rate is also a metric utilized because a high cross-
entropy loss rate indicates predictions with a strong deviation from actual labels. These three
metrics will provide a reliable estimate of our model’s performance to a high degree.

The most accurate model was the hybridized model. Blending models that work
accurately within small groups with models that are scalable to a large degree provides our study
with an increased accuracy rate, even with a small participant pool of 100 simulated participants.
This model also shows potential for scalability, especially through the usage of RNN and CNN
for larger participant pools. The average accuracy rate through 5-fold cross-validation was
around 95%; to make note of this, multiple studies of PET scans regarding Alzheimer’s during
the years 2020 to 2024 yielded accuracy rates of 85% %. Neuro’s high accuracy shows promise
for its future integration into clinical trials. Cross-entropy loss stayed at an all-time low of about
0.2072 for our best model. The accuracy and cross-entropy loss are displayed below in Figures 1
and 2.

Model Performance Comparison
Alzheimer's Detection via Speech Biomarkers
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Cross-Entropy Loss Analysis
Alzheimer's Detection Models
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The hybrid model’s AUC of 0.931 demonstrates Neuro’s accuracy. A high AUC
represents a high rate of true positives as well as a low rate of false positives. It correlates to the
ROC, which illustrates the relationship between the rate of true positives versus false positives.
Below, Figure 3 below shows the ROC and the AUC of each model.

ROC Curves Comparison
Alzheimer's Detection Models
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Discussion

Our study proposes Neuro as an accessible and accurate multimodal approach to
detecting Alzheimer’s disease using machine learning. The framework is designed to be capable
of handling diverse groups while still providing flexibility and explainability within diagnoses.
Out of the 80 healthy control (HC) synthetic audio files, an average of 76 were correctly
classified as such, while 4 were misclassified as showing signs of Alzheimer’s. This corresponds
to an accuracy rate of 95% + 1.2% for HC predictions. The misclassification of the 4 HC files
can be attributed to several factors, such as overlap between normal aging and early pathological
changes. However, the most likely explanation lies in the subtle distinction between these
groups. Compared to the pronounced differences seen in those in the later stages of Alzheimer’s,
typical aging biomarkers and early Alzheimer's traits are difficult to distinguish. For example,
HC participants may exhibit average speech pause durations of 1.5 seconds, whereas early AD
participants generally exhibit slightly longer pauses of around 2 seconds. These marginal
differences create borderline cases in which typical age-related processing delays resemble
patterns found in patients with early Alzheimer’s disease. This overlap in numerical biomarker
values due to acoustic similarity proves to be a fundamental challenge in early detection. Despite
the inclusion of this complexity in the generation of our synthetic participants, Neuro correctly
classified 19 out of 20 AD participants’ voice samples. This resulted in an accuracy rate of 95% +
0.8%. Table 1, featured below, shows the accuracy rates of our various Al models, with the
hybrid model being the most successful based on the results explained above.

Algorithm True False Healthy True False A:c(l:j:)l:y Ern:;(u I;ate

Negatives Positives Total Positives Negatives

Random Forest .8 12 80 15.2 48 20 88.0 12.0

Gradient Boosting 69.6 104 80 4.4 5.6 20 84.0 16.0

SVM 66.4 136 80 152 4.8 20 816 184

MLP 64.0 16.0 80 14.0 6.0 20 78.0 20

CNN 6L.6 184 80 128 12 20 74.4 56

RNN 63.2 16.8 80 13.6 6.4 20 76.8 232

Ensemble (All 6) 76.0 4.0 80 19.0 Lo 20 95.0 5.0

(Table 1.)

Explanations of the process were created using SHAP to provide an interpretation of our
model’s predictions. These explanations offer insight into how biomarkers contributed to
diagnostic decisions, validating the algorithm’s reasoning process. The SHAP summary displays
the most influential features used by our ensemble model (refer to Figure 6 below for reference).
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Individual Feature Contributions
Across All Predictions
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(Figure 4.)

Error analysis reveals opportunities for improved diagnostic accuracy through targeted
biomarker enhancement. Although age-corrected normalization algorithms sometimes create
false positive rates, they maintain heightened sensitivity for true cognitive decline. Incorporating
biomarker tracking rather than single-point assessment may better distinguish temporary
fluctuations. Certain spectral features may be de-emphasized if necessary and later combined to
create one robust measure. Semantic similarity analysis and working memory markers can
address false negative cases by capturing cognitive domains not fully represented in current
acoustic measures. These improvements could enhance Neuro’s ability to detect the entire
spectrum of Alzheimer’s disease whilst maintaining accessibility.

Limitations

Although Neuro displays promising results, it is currently limited by its usage of
synthetic data. While synthetic data can use evidence-based mathematical modeling of cognitive
decline, it is incapable of fully encapsulating the spectrum of individual variability. A variety of
factors, from comorbidities to environmental influences, can affect speech production among AD
participants. Synthetic biomarkers, while statistically rigorous, can oversimplify complex
interactions within the brain that cause neurodegeneration. This lack of realistic diversity may
artificially heighten our accuracy rate, meaning that real human data would be needed to confirm
Neuro’s success.
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While our relatively small sample size of 100 synthetic participants can be used as a pilot
study, it is an oversimplification of the entire Alzheimer’s population. Development of an
increased training dataset is crucial to improving Neuro. A larger sample size is needed to create
an accurate representation of the millions of patients with Alzheimer’s. The limited sample size
also restricts our ability to perform comprehensive analyses across varied populations. To
account for twelve different languages, gender, HC versus AD, and age, the subgroups typically
consisted of one to two people. This amount of data is insufficient to properly analyze for a
disease affecting millions.

Our hybrid model, which combined RF, GB, SVM, MLP, CNN, and RNN, introduced
computational complexity, which contributed to the risk of overfitting. Despite achieving 95% +
2.2% accuracy, it specifically proved effective for synthetic data classification; further testing is
required to check for accuracy among real patients. Our hybrid weight optimization, weighted
from highest accuracy to lowest, created layers of complexity that were not balanced against
dataset limitations, which also contributed to overfitting. This overcomplexity of data size
warrants future work to improve the hybrid model balance through live training data.

Another difficult aspect of Neuro’s implementation is the consideration of cognitive
disorders beyond Alzheimer’s disease. Our hybrid model has displayed accuracy in the detection
of early cognitive decline, but its applicability to other neurodegenerative diseases is uncertain.
Neuro displays strength in biomarker detection, but those biomarkers may potentially overlap
with those from other diseases. For conditions that can affect speech systems, such as
Parkinson’s, transferability may be higher. However, for diseases such as Lewy body dementia
or vascular dementia, the results are unknown, and further testing is required. An even more
comprehensive multimodal approach, including additional cognitive testing and access to
electronic health records, could improve Neuro’s ability to detect and consider diseases besides
Alzheimer’s, helping to avoid misdiagnosis.
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Methodology
Participant Demographics

Patient Demographics Summary
Alzheimer's Detection Study Cohort (N=100)

Total Participants 100 100%
Age Distribution [ [
45-85 years ‘ 40 40% Mean: 550+ 100
66-95 years ‘ 60 60% Mean: 755+ 9.5
Overall Age Range ‘ 45-95 years ‘ Mean: 67.2 + 14.8
Age at Diagnosis (At-Risk) | 52.88 years Mean: 713+ 11.2 n=20
Gender Distribution [

Male 45 45% 386 Healthy, 9 At-Risk

Female 55 | 55% | 44 Healthy, 11 At-Risk
Cognitive Status [ [ |
Healthy Controls 80 [ 80% | MMSE: 28.2+ 1.4
At-Risk/MCI 20 20% | MMSE: 241428
Language Background
English Native | 60 | 60% 48 Healthy, 12 At-Risk
Multilingual 40 40% 32 Healthy, 8 At-Risk
Speech Characteristics
Normal Speech Rate ‘ 75 75% 62 Healthy, 13 At-Risk
Slow Speech Rate 25 25% | 18 Healthy, 7 At-Risk
Word-Finding Difficulties [ 15 [ 15% | 3 Healthy, 12 Al-Risk
(Table 2.)

Our dataset represented clinically realistic patients, displaying disparities such as language
differences and underrepresented populations within the healthcare sphere.

Data Preprocessing

Our dataset was synthetically generated. We created 100 simulated patients, 20 of whom
were diagnosed with Alzheimer’s. These 20 patients made up the AD group, whilst the rest made
up the HC group. An 80/20 split was utilized as it represented epidemiologically accurate real-
world scenarios. The biomarker generation process incorporated mathematical modeling to
simulate patterns of cognitive decline. General parameters were created and organized into
categories based on health status. The HC group contained data that indicated low word error
rates as well as high semantic similarity. On the other hand, the AD group’s data featured a high
word error rate and low semantic similarity. Beyond the baseline details, age-related cognitive
decline was mathematically modeled linearly to simulate realistic aging effects. UTF-8 encoding
was used to standardize the 12 languages used. Neuro generated 151 biomarkers for the
simulated data, while also accounting for language-specific and sex-specific acoustic
adjustments.

Data Analysis

Neuro processes Waveform Audio (WAV) files exceptionally well using LibRosa, an
audio library that extracts auditory biomarkers from our synthetic audio models. While it does
not actually synthesize any sound, LibRosa can generate spectrograms and extract MFCC data
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from audio signals extracted with NumPy. In such a way, we can mimic real biomarkers from
patients for Neuro to analyze. Our synthetic audio generation creates NumPy arrays representing
speech signals at 16kHz. We also incorporated realistic amplitude variations, frequency
modulations, and temporal patterns of both HC and AD participants’ speech. LibRosa’s
comprehensive feature extraction process transforms these synthetic signals through short-time
Fourier transformations for spectrogram generation and Mel-Scale filter bank analysis for MFCC
computation. First, our system processes audio files labeled participant name.wav, enabling
batch processing whilst also maintaining individual tracking. Standard naming allows for result
correlation, as well as automated file handling across our diverse dataset. The

extract audio_features method is the core processing engine, analyzing each participant through
LibRosa’s feature extraction. This method handles the biomarker extraction process, and its
architecture allows for cross-linguistic analysis and processing consistency. After extraction, we
clean missing values with median imputation as well as remove outliers through the 3-sigma rule
(68-95-99.7). We also normalize our data through z-score standardization, then filter our data
through correlation and variance analysis to reduce redundancy. Feature selection is the next
step, processing biomarkers by ranking, lassoing the best features, and then utilizing recursive
feature elimination to remove less significant features. After selection, we retain 45-60
biomarkers that are later stratified into training, validation, and test sets with 5-fold cross-
validation. Once this process is complete, our models are fully trained, and their predictions are
combined to make the hybridized model.

To explain Neuro’s predictions, we utilized SHAP, which interpreted our model’s
predictions by quantifying biomarker influence. As noted in Fig. 9, pause duration (0.185),
fundamental frequency stability (0.162), and MFCC coefficient (0.148) were the strongest
discriminators, provided as global rankings of feature importance.

SHAP Feature Importance
Alzheimer's Risk Detection Model
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Spectrogram analysis also plays a key role in detection. Through short-time Fourier
transformation analysis, which creates a time-frequency representation for capturing temporal
patterns of speech degradation, a spectrogram is created. The features of these spectrograms are
integrated with traditional biomarkers and made into quantitative features used by Neuro.
Quantitative features such as spectral entropy and flux, formant trajectory variability, harmonic
to noise ratio, and pauses provide markers of possible cognitive decline. Figure 8 below shows
the variances between an HC and an AD patient, with the frequency variability being much lower
for the AD patient than the HC patient.
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